Identification of residues in DmsD for twin-arginine leader peptide binding, defined through random and bioinformatics-directed mutagenesis.

نویسندگان

  • Catherine S Chan
  • Tara M L Winstone
  • Limei Chang
  • Charles M Stevens
  • Matthew L Workentine
  • Haiming Li
  • Ying Wei
  • Mary J Ondrechen
  • Mark Paetzel
  • Raymond J Turner
چکیده

The twin-arginine translocase (Tat) system is used for the targeting and translocation of folded proteins across the cell membrane of most bacteria. Substrates of this system contain a conserved "twin-arginine" (RR) motif within their signal/leader peptide sequence. Many Tat substrates have their own system-specific chaperone called redox enzyme maturation proteins (REMPs). Here, we study the binding of DmsD, the REMP for dimethyl sulfoxide reductase in Escherichia coli, toward the RR-containing leader peptide of the catalytic subunit DmsA. We have used a multipronged approach targeted at the amino acid sequence of DmsD to define residues and regions important for recognition of the DmsA leader sequence. Residues identified through bioinformatics and THEMATICS analysis were mutated using site-directed mutagenesis. These DmsD residue variants were purified and screened with an in vitro dot-blot far-Western assay to analyze the binding to the DmsA leader sequence. Degenerative polymerase chain reaction was also used to produce a bank of random DmsD amino acid mutants, which were then screened by an in vivo bacterial two-hybrid assay. Using this hybrid method, each DmsD variant was classified into one of three groups based on their degree of interaction with the DmsA leader (none, weak, and moderate). The data from both the in vitro and in vivo analyses were then applied to a model structure of DmsD based on the crystal structure of the Salmonella typhimurium homologue. Our results illustrate the positions of important DmsD residues involved in binding the DmsA leader peptide and identify a "hot pocket" of residues important for leader binding on the structure of DmsD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hydrophobic Region of the DmsA Twin-Arginine Leader Peptide Determines Specificity with Chaperone DmsD

The system specific chaperone DmsD plays a role in the maturation of the catalytic subunit of dimethyl sulfoxide (DMSO) reductase, DmsA. Pre-DmsA contains a 45-amino acid twin-arginine leader peptide that is important for targeting and translocation of folded and cofactor-loaded DmsA by the twin-arginine translocase. DmsD has previously been shown to interact with the complete twin-arginine lea...

متن کامل

Structural analysis of a monomeric form of the twin-arginine leader peptide binding chaperone Escherichia coli DmsD.

The redox enzyme maturation proteins play an essential role in the proofreading and membrane targeting of protein substrates to the twin-arginine translocase. Functionally, the most thoroughly characterized redox enzyme maturation protein to date is Escherichia coli DmsD (EcDmsD). Herein, we present the X-ray crystal structure of the monomeric form of the EcDmsD refined to 2.0 A resolution, wit...

متن کامل

Unique Photobleaching Phenomena of the Twin-Arginine Translocase Respiratory Enzyme Chaperone DmsD

DmsD is a chaperone of the redox enzyme maturation protein family specifically required for biogenesis of DMSO reductase in Escherichia coli. It exists in multiple folding forms, all of which are capable of binding its known substrate, the twin-arginine leader sequence of the DmsA catalytic subunit. It is important for maturation of the reductase and targeting to the cytoplasmic membrane for tr...

متن کامل

Biosynthesis of selenate reductase in Salmonella enterica: critical roles for the signal peptide and DmsD

Salmonella enterica serovar Typhimurium is a Gram-negative bacterium with a flexible respiratory capability. Under anaerobic conditions, S. enterica can utilize a range of terminal electron acceptors, including selenate, to sustain respiratory electron transport. The S. enterica selenate reductase is a membrane-bound enzyme encoded by the ynfEFGH-dmsD operon. The active enzyme is predicted to c...

متن کامل

Purification of a Tat leader peptide by co-expression with its chaperone.

We present a method for the purification of the 45 residue long leader peptide of Escherichia coli dimethyl sulfoxide reductase subunit A (DmsA(L)), a substrate of the twin arginine translocase, by co-expressing the leader peptide with its specific chaperone protein, DmsD. The peptide can be isolated from the soluble DmsA(L)/DmsD complex or conveniently from the lysate pellet fraction. The reco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 47 9  شماره 

صفحات  -

تاریخ انتشار 2008